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Graded and Binary Responses in Stohas-ti Gene ExpressionRajesh Karmakar and Indrani Bose∗Department of PhysisBose Institute93/1, Aharya Prafulla Chandra Road, Kolkata-700 009, India.
∗ Author to be ontated; e-mail: indrani�bosemain.boseinst.a.inAbstratReently, several theoretial and experimental studies have been undertaken toprobe the e�et of stohastiity on gene expression (GE). In experiments, the GE re-sponse to an induing signal in a ell, measured by the amount of mRNAs/proteinssynthesized, is found to be either graded or binary. The latter type of responsegives rise to a bimodal distribution in protein levels in an ensemble of ells. Onepossible origin of binary response is ellular bistability ahieved through positivefeedbak or autoregulation. In this paper, we study a simple, stohasti model ofGE and show that the origin of binary response lies exlusively in stohastiity.The transitions between the ative and inative states of the gene are random innature. Graded and binary responses our in the model depending on the rel-ative stability of the ativated and deativated gene states with respet to thatof mRNAs/proteins. The theoretial results on binary response provide a gooddesription of the �all-or-none� phenomenon observed in an eukaryoti system.Keywords: gene expression, graded and binary responses, stohasti binaryresponse, �all-or-none� phenomenon, probability density, ativation1. IntrodutionGene expression (GE) is the entral ativity in a living ell. The two ma-jor steps in GE, transription and translation, involve several biohemialreations. The time evolution of this system of reations or events is not aontinuous proess as moleular population levels in a reating system hangeonly by disrete amounts. Furthermore, the time evolution is not determin-isti as the biohemial events underlying GE are probabilisti in nature,i.e., the timing of the biohemial events annot be predited with ertainty.For example, the binding/unbinding of RNA polymerase (RNAP ) at thepromoter region of DNA and that of regulatory moleules at the operatorregions are probabilisti proesses. The disrete, probabilisti nature of the1



biohemial events may be ignored in the limit of large numbers of partii-pating biohemial moleules. In this ase, the biohemial reations/eventsour at muh higher frequenies and �utuations around the mean levels ofbiomoleules partiipating in GE are small. Thus, the time evolution of thesystem of reations may be treated to be ontinuous and deterministi as inthe traditional di�erential rate equation approah. In a living ell, the num-ber of biomoleules involved in GE is often small so that a stohasti ratherthan deterministi desription provides the more orret piture. In reentyears, there is a growing realization that stohastiity plays an importantrole in determining the outome of biohemial proesses in the ell [1, 2℄.Stohasti e�ets in GE explain the pronouned ell-ell variation observed inisogeni populations. A ell may have the option of proeeding along one oftwo possible developmental pathways. The pathway seletion is probabilistiand the ell fate depends on the partiular hoie of pathway. Thus, even alonal population of ells an give rise to two distint subpopulations in theourse of time. The randomization of pathway hoie leads to diversity andinreases the likelihood of survival of organisms in widely di�erent environ-ments. A well-known example of the two way-hoie is that of lysis-lysogenyin E. Coli [3℄.The e�et of stohastiity (randomness/noise) is prominent at the levelof an individual ell and an be masked due to ensemble averaging in apopulation of ells. Single ell experiments provide evidene that GE in aell ours in abrupt stohasti bursts [4, 5, 6℄. In more reent experiments,a quantitative measure of noise assoiated with GE has been obtained inboth prokaryoti as well as eukaryoti ells [7, 8, 9℄. A large number oftheoretial studies address the origin and onsequenes of stohastiity inGE [3, 10, 11, 12, 13, 14, 15, 16, 17, 18℄. Thus, the notion of stohastiity inGE is well established both theoretially and experimentally.Regulation of GE in a ell is ahieved in a manifold of ways whih in-rease in omplexity from prokaryoti to eukaryoti ells. In the prokaryotisystems, regulation is ahieved by the binding of regulatory moleules (re-pressors or ativators) to the operator regions of DNA. In eukaryotes, theativator moleules are known as transription fators (TFs). Intra- andextra- ellular induing signals ativate the TFs whih then bind to appro-priate enhaner sequenes on the DNA. The GE response to an induingsignal in an individual ell may be graded or binary. Response is quanti�edby the amount of mRNAs/proteins synthesized. In graded response, theoutput varies ontinuously as the amount of input stimulus is varied till the2



steady state is reahed. In binary response, alternatively termed the �all-or-none� phenomenon, the output has a binary harater, i.e., GE ours ateither a low or a high level and expression at intermediate levels is rare. Thisgives rise to a bimodal distribution in protein levels in an ensemble of ells.Several experiments on both prokaryoti and eukaryoti ells establish thebinary harater of GE [6, 9, 19, 20, 21, 22, 23℄. Binary response may be as-ribed to bistability whih implies existene of two stable steady states withlow and high protein levels of GE. One way of ahieving bistability is throughpositive feedbak or autoatalysis in whih the protein produt of GE pro-motes further GE either diretly or via intermediates. The lac operon in E.Coli is an example of a model system in whih autoatalyti indution givesrise to the �all-or-none� phenomenon in GE [19, 23, 24, 25, 26℄. Bekskei et al.[23℄ have demonstrated that positive feedbak an generate binary responsein a syntheti eukaryoti gene iruit. In eukaryoti transription, enhanersativate the usually weak eukaryoti promoters. There is now strong experi-mental evidene that in some systems enhaners do not a�et transriptionrate but rather inrease the probability of a gene synthesizing proteins at ahigh level [27, 28, 29, 30℄. In a population of ells, enhaners inrease thenumber of ells expressing at a high level but not the level of expression perell.Binary response in GE an have a purely stohasti origin. Kepler andElston [10℄ provide examples of stohasti binary response (SBR), i.e., binaryresponse indued by noise. A simple model of SBR shows a binary distribu-tion of mRNA levels in an ensemble of ells [31℄. A reent model of eukary-oti GE suggests that �utuations in the binding of TFs to DNA an explaingraded and binary responses observed in induible GE [32℄. Fast hemialkinetis is responsible for a graded response whereas slow kinetis leads to abinary output. The �all-or-none� phenomenon observed in some eukaryotisystems does not involve positive feedbak proesses expliitly [4, 5, 6℄. Onthe other hand, protein synthesis in these systems ours in stohasti bursts.Sine the e�et of stohastiity is prominent in these systems, it is reasonableto onjeture that the �all-or-none� phenomenon (binary response) observedin these systems is a manifestation of stohastiity. In this paper, we on-sider a simple, stohasti model of GE studied earlier [13, 17, 33℄. We showthat graded and binary responses our naturally in the model depending onthe relative stability of ativated and deativated gene states with respet tothat of mRNAs/proteins. Binary response, obtained in the model, arisessolely due to stohastiity and not due to positive feedbak proesses. We3



further show that our model gives a good desription of the �all-or-none�phenomenon observed in an eukaryoti system [6℄.2. Stohasti model of GEIn the minimal model of GE, a gene an be in two possible states: inative(G) and ative (G∗). Random transitions our between the states G and
G∗ aording to the �rst order kinetis

G
ka

⇋

kd

G⋆

jp

−→ p
kp

−→ Φ (1)where ka and kd are the ativation and deativation rate onstants. In theative state G∗, transription is initiated followed by translation and proteinsynthesis. The separate proesses are ombined into a single step of protein
(p) synthesis with the rate onstant jp. The protein degrades with the rateonstant kp and the degradation produt is represented as Φ. If ell divisionis taken into aount, the protein deay rate has two omponents, one thedegradation rate and the other the dilution rate of proteins due to ell growthand division. In this ase, kp denotes the rate onstant for protein deay.In induible GE systems, the ativation of a gene is brought about by anativator S, say, TFs. The reation sheme in the presene of S is given by

G + S
k1

⇋

k2

G−S
ka

⇋

kd

G⋆

jp

−→ p
kp

−→ Φ (2)where G−S represents the bound omplex of G and S. The reation shemein equation (2) an be generalized by inluding diret transitions between Gand G∗. The rate onstants for transitions from G to G∗ and G∗ to G are konand koff respetively. For eukaryoti systems, the rate onstant kon has avery low value as ativating TFs, S, are required in most ases for transistionto the ative state G∗. The reation sheme is given by
k1 ka

G + S ⇋ G−S ⇋ G∗

k2 kd

,
kon

G ⇋ G∗

koff4



jp kp

G∗ −→ p −→ Φ
(3)For eukaryoti systems, the initiation of transription by RNA polymeraseII generally requires a prior assembly of TFs on the enhaner regions of thetarget gene. This state of the gene is represented by G−S in the reationsheme 3. The ativating TFs, S, failitate the formation of the transriptioninitiation omplex whih is bound to the promoter region of DNA and on-sists of general TFs, other fators and RNA polymerase II. The gene is nowin the ative state G∗ and RNAP starts transription after disengaging itselffrom the initiation omplex through the key step of phosphorylation. Thegeneral TFs are then released allowing for the initiation of a new round oftransription with another RNAP moleule. In the simple reation sheme3, this is respresented by a return after transription initiation to the inter-mediate omplex G−S and subsequent return to the ative state G∗.If nG be the total onentration of genes then

nG = [G] + [G−S] + [G∗] (4)where [G], [G−S], and [G∗] denote the onentrations of genes in the states
G, G−S, and G∗ respetively. Using the method of King and Altman [34℄,the frations of genes in the inative, intermediate and ative states are givenby

[G]
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=
ka koff + k2 koff + kd k2
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nG

=
kd k1 S + kon kd + koff k1 S

A
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nG

=
ka k1 S + ka kon + k2 kon

A
(5)respetively, where

A = kak1S+ka kon+k2kon+kdk1S+konkd+koff k1S+kakoff +k2koff +kdk2(6)From equation (5), one an further write
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= nG k
′

a
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a+k
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d

(7)where
k

′
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)
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(8)Also,

ks =
k2

k1

, k =
k2

kon

and k
′

=
k2

koff

(9)In the reation sheme 1, the steady state onentration of genes in the ativestate is given by
[G∗] =

nG ka

ka + kd

(10)Expressions (7) and (10) are idential in form with ka and kd replaed by k
′

a,
k

′

d. The equivalene relations in equation (8) enable one to map the reationsheme 3 onto the simpler sheme 1 while alulating various quantities. Useof the simpler reation sheme leads to greater mathematial tratability.The half-lives of the ative and inative states of the gene in the reationsheme 3 are given by T
′

a = log2/k
′

a and T
′

d = log2/k
′

d respetively. Sine k
′

aand k
′

d are given by equation (8), the half-lives are dependent on ka, kd aswell as S, the onentration of TFs.We now onsider a simple stohasti model orresponding to reationsheme 1. The results we derive hold true for the more ompliated reationsheme 3 but with ka, kd replaed by k
′

a, k
′

d (equation (8)). At this point, onean ask about the validity of the equivalene relations (equations (7) and (8))in the stohasti ase. Use of the relations is justi�ed only if the �utuationsin the onentration S of the ativator moleules are ignored. Exat valid-ity an be established by deriving expressions for variane from the MasterEquations (treating S to be onstant) orresponding to the reation shemes1 and 3. This has been done for the simpler ase kon = 0, koff = 0 (in thegeneral ase, these rate onstants are muh smaller than the ativation anddeativation rate onstants ka and kd). The expressions for variane in thereation shemes 1 and 3, are found to be idential with ka, kd in sheme 1replaed by k
′

a, k
′

d in sheme 3. In the model, the only stohastiity arisesfrom random transitions of a gene between the inative and ative states asin the minimal model of Cook et al. [13℄. Protein synthesis from the ative6



gene and protein degradation our in a deterministi manner. In eah stateof the gene, the onentration of proteins evolves deterministially aordingto the equation
dx

dt
=

jp

Xmax

z − kp x = f(x, z) (11)where z = 1(0) when the gene is in the ative (inative) state and x = X
Xmax

,
X and Xmax being the protein onentration at time t and the maximumprotein onentration respetively. The variable x thus denotes protein on-entration normalized by the maximum possible onentration. The latterquantity is equal to the protein onentration in the steady state if the gene isalways in the ative state, i.e, deativation proesses are disallowed. We notethat Xmax = jp

kp
. Let pj(x, t) (j = 0, 1) be the probability density funtionwhen z = j. The total probability density funtion is

p(x, t) = p0(x, t) + p1(x, t) (12)The rate of hange of probability density is given by
∂pj(x, t)

∂t
= −

∂

∂x
[f(x, j) pj(x, t)] +

∑
k 6=j

[Wkj pk(x, t) − Wjk pj(x, t)] (13)where Wkj is the transition rate from the state k to the state j and Wjk isthe same for the reverse transition. The �rst term in equation (13) is the soalled �transport� term representing the net �ow of the probability density.The seond term represents the gain/loss in the probability density due torandom transitions between the state j and other aessible states. In thepresent ase, equation (13) gives rise to the following two equations:
∂p0(x, t)

∂t
= −

∂

∂x
(−kp x p0(x, t)) + kd p1(x, t) − ka p0(x, t) (14)

∂p1(x, t)

∂t
= −

∂

∂x
{(

jp

Xmax

− kp x) p1(x, t)} + ka p0(x, t) − kd p1(x, t) (15)The steady state distribution (∂p0(x,t)
∂t

= 0, ∂p1(x,t)
∂t

= 0) is given by
p(x) = N x

(ka
kp

−1)
(1 − x)

(
kd
kp

−1) (16)7
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()Figure 1: Plot of p(x) versus x (Case I, r1, r2 > 1): 1A (r2 >> r1), 1B(r2 = r1) and 1C (r1 >> r2) respetively.where N , the normalization onstant, is given by the inverse of a beta fun-tion [14℄
N =

1

B(ka

kp
, kd

kp
)

(17)3. Graded and binary responsesThe graded and binary responses to varying onentrations of S an be un-derstood by onsidering two limiting ases of the steady state distribution ofprotein levels p(x) (equation (16)): ka

kp
, kd

kp
> 1 (Case I) and ka

kp
, kd

kp
< 1 (CaseII). Figure 1 shows plots of p(x) versus x orresponding to Case I. The meanvalue of x is given by

< x > =

∫ 1

0

x p(x) dx (18)
=

jp

kp

ka

ka + kd

(19)De�ne r1 = ka

kp
and r2 = kd

kp
. Figures 1A, 1B and 1C orrespond to

r2 >> r1 > 1, r1 = r2 > 1 and r1 >> r2 > 1 respetively. In the presene ofan induing stimulus, ka and kd are replaed by k
′

a and k
′

d (equation (8)).As r1 = k
′

a

kp
inreases, the mean protein level inreases from a lower to ahigher value. The inrease in r1 an be brought about by inreasing theonentration of S. Thus the mean protein level is a ontinuous funtion of8



[S], i.e., a graded response is obtained. Saturation level is reahed when S
ksin equation (8) is >> 1 so that k

′

a = ka and k
′

d = kd + koff .Figure 2 shows plots of p(x) versus x orresponding to Case II, i.e., r1 < 1,
r2 < 1. In this ase p(x) is peaked at a low (zero) value of x (r1 << r2, �gure2A), a high value of x (r1 >> r2, �gure 2D) or at both low and high valuesof x (�gures 2B and 2C). Thus, in a ell GE predominantly ours at lowand/or high levels and protein prodution at intermediate levels is negligible.Again, in the presene of an induing stimulus, S, r1 = k

′

a

kp
and r2 =

k
′

d

kp
anbe hanged by hanging the onentration [S]. The response in this ase isnot graded as the mean protein level is not a ontinuous funtion of [S℄ buthas only low and high values. Figures 2B and 2C orrespond to SBR andbifuration from a unimodal probability distribution funtion (�gure 2A) toa bimodal one is brought about by varying r1 and r2. SBR gives rise to the�all-or-none� phenomenon in GE. In experiments on a population of ells, afration of ells is found to be in the state with low (zero) level of GE andanother fration is in the state with high level of GE. The fration of ells inwhih protein synthesis ours at intermediate levels is small. In the aseswhen r1 > 1, r2 < 1 and r1 < 1, r2 > 1, unimodal responses are obtained. Inthe �rst ase, GE ours at a high level and in the seond ase, GE oursat a low level. The response is not graded in the presene of an induingstimulus.The graded and binary responses to an induing stimulus are a naturaloutome of stohasti gene ativation and deativation proesses. If the geneis always in the inative state (z = 0 in equation (11)), the mean proteinlevel orresponds to x = 0. If the gene is in the ative state (z = 1) and nodeativation proesses are allowed, the mean protein level is given by jp

kp
and

x = 1 orresponding to maximum protein synthesis. When stohasti GEis onsidered, i.e., random ativation/deativation proesses are taken intoaount, two possibilities arise. If the ativation and deativation rates arefaster than the protein degradation rate, an average protein level is obtaineddue to the aumulation of proteins over random transitions between thevalues x = 0 and x = 1. In the opposite ase, i.e., when the ativation anddeativation rates are slower than the protein degradation rate, the meanprotein level is either x = 0 or x = 1 depending on whether the gene is inthe inative or the ative state. The half-life of eah suh state is larger thanthat of synthesized proteins so that in eah ase su�ient time is available9



for the mean protein level to attain its partiular steady state value. Dueto the relatively larger protein degradation rate, there is no aumulationof proteins over the random transitions so that observed protein levels arepredominantly at x = 0 and x = 1.Ko [11℄ has onsidered a stohasti model for gene indution and hasshown using omputer simulation that two types of response are possible. GEin the model is swithed on and o� due to the binding and unbinding of theTF-omplex at the gene. Stohastiity is introdued into the model beauseof the probabilisti nature of the binding and unbinding events. An unstabletransription omplex auses a �homogeneous� level of gene indution whilea stable transription omplex gives rise to a �heterogeneous� level. Thehomogeneous ase is analogous to graded response and the binary responseis an example of heterogeneous response. In the detailed stohasti modelstudied by Pirone and Elston [32℄, �utuations in TF binding are shown toexplain graded and binary responses to an induing stimulus. A binary pat-tern of GE is obtained when the enhaner-state �utuations (aused by thebinding and unbinding of TFs) are slow whereas faster enhaner-state �utu-ation give rise to a graded response. The onlusions are arrived at by usinga ombination of approximate analytial methods and numerial tehniqueslike Monte Carlo (MC) simulation based on the Gillespie Algorithm. Therole of operator �utuations in transriptional regulation has been studiedby Kepler and Elston [10℄ using the Master Equation Approah. In the limitof large protein abundane, an equation similar to equation (13) is obtained.Again, the interpretation is the same. In eah state of the operator, the pro-tein onentration evolves deterministially but there are random transitionsbetween the two states of the operator orresponding to the oupation andunoupation of the operator region by an ativator. The analysis is not,however, extended further.

10
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(d)Figure 2: Plot of p(x) versus x (Case II, r1, r2 < 1): 2A (r2 >> r1), 2B
(r2 > r1), 2C (r2 = r1), and 2D (r1 >> r2) respetively.Disovery of biologially ative moleules, say, drugs involves testing thee�et of suh moleules on appropriate targets. Membrane reeptors are thelargest lass of drug targets. Drugs interating with reeptors are broadlyof two types: antagonists and agonists. Antagonists blok reeptor ativitywhereas agonists binding to the reeptors enhane ellular ativity. The bind-ing triggers a series of biohemial events whih lead to a hange in ellularativity. The hange an be linked to the expression of a reporter gene sothat detetion and quanti�ation of the response to agonist-indued reeptorativation are possible. Figure 3 shows a artoon of how the reporter geneonveys information regarding reeptor ativation [6℄. A asade of intra-ellular proesses are initiated by the binding of an agonist to the reeptor.11
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Figure 3: Shemati diagram showing the ation of arbahol.This is aompanied by a hange in the onentrations of messengers in theell. As a result, TFs are ativated whih then transloate to the nuleus.The TFs bind to the target gene and initiate expression of both this geneas well the reporter gene. The mRNA, generated from the reporter gene,is translated into the reporter enzyme. The reporter enzyme atalyzes theonversion of substrates into detetable produts.The senario depited in �gure 3 provides the basis for high-throughputsreening of pharmaeutial andidate drugs in living mammalian ells [6℄.The reporter gene used is β − lactamase the protein produt of whih hy-drolyzes a substrate giving rise to a large shift in �uoresene emission wave-length. Cells in whih the reporter gene is not expressed or expressed at avery low level appear �uoresent green whereas reporter-positive ells with ahigh level of GE appear �uoresent blue. The ativation of ellular proessesis brought about by the binding of the agonist arbahol to the musarinireeptor. In the experiment, the perentages of blue, blue-green (intermedi-ate level of GE) and green ells are measured by �ow ytometry with varyingarbahol dose and also as a funtion of time after stimulation by arba-hol. The major �nding is that as the arbahol dose inreases from a lowto high value, the fration of green ells (low level of GE) dereases and thatof blue ells (high level of GE) inreases. The perentage of blue-green ellsremains fairly low throughout. This is a manifestation of the �all-or-none�phenomenon, i.e., binary response in GE.12



We now show that the simple stohasti model studied by us provides agood quantitative �t to the experimental data of Zlokarnik et al. Sine theprobability density funtion p(x) of protein levels is known (equation (16)),one an alulate experimentally measurable quantities like the dose-responsefuntion. Figure 4 shows the experimental data points orresponding tofrations of blue + blue-green (depited by solid triangles) and blue (depitedby solid squares) ells versus log (C), where C is the arbahol onentration.The fration of blue-green ells is given by the di�erene in data pointsbelonging to the two urves. The remaining ell frations desribe greenells. The onentration of ativated TFs (S in our model) may be taken tobe proportional to the onentration C of arbahol and in our theoretialdose-response urves (solid lines in �gure 4), [S] replaes C. From equation(16), the steady state probability of �nding a ell with x (mean protein leveldivided by maximum protein onentration), greater than a threshold value
xthr is

p(x > xthr) = 1 −

∫ xthr

0
x

(ka
kp

−1)
(1 − x)

(
kd
kp

−1)
dx

∫ 1

0
x

(ka
kp

−1)
(1 − x)

(
kd
kp

−1)
dx

(20)
= 1 −

kp x

ka
kp
thr F1[1−

kd
kp

, ka
kp

, 1+ ka
kp

, xthr]

ka B(ka

kp
, kd

kp
)

(21)where 2F1(a, b, c; z) is the hypergeometri funtion [35℄. In our model, weassume that a ell is in a state with high level of GE if the mean proteinlevel in the steady state is greater than a fration of 0.9 of the maximumprotein onentration i.e., x > 0.9. By setting xthr = 0.9 in equation (20)and replaing ka, kd by the e�etive rate onstants k
′

a, k
′

d (equation (8)), onean alulate p(x > xthr) for various values of S. The probability p(x > xthr)an also be interpreted as the fration of ells in a ell population with
x > xthr. The theoretial dose-response urve obtained in this manner givesa good �t to the experimental data points (solid squares in �gure 4) for theparameter values (in arbitrary units) k2 = 1.6 × 10−4, kon = 1.2 × 10−6,
koff = 1.32 × 10−4, ks = 1.6 × 10−6, kp = 1, ka = 0.17 and kd = 0.0465. Thedata points in this ase orrespond to the fration of ells in a high level ofGE (blue ells). A ell is assumed to be in a state with low level of GE if xis < xthr = 0.1 (green ells). A ell is in a state with intermediate level ofGE when 0.1 < x < 0.9 (blue-green ells). The ell fration in the last ase13



is given by
p(0.1 < x < 0.9) =

∫ 0.9

0.1
x

(ka
kp

−1)
(1 − x)

(
kd
kp

−1)
dx∫ 1

0
x

(ka
kp

−1)
(1 − x)

(
kd
kp

−1)
dx

(22)with ka, kd replaed by k
′

a and k
′

d. The fration of blue + blue-green ells isomputed from an expression similar to 22 but with the integration limits(0.1, 0.9) in the numerator replaed by (0.1, 1.0). The alulated dose-response urve gives a good �t to the experimental data points (solid trian-gles in �gure 4). The two urves in �gure 4 have been obtained for the sameset of parameter values using Mathematia. The good quantitative agree-ment between our theoretial results and experimental data indiates thatthe stohasti model of GE onsidered by us aptures the essential featuresof stohastially indued binary response in GE.
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Figure 4: Frations of blue + blue-green (upper urve) and blue (lower urve)ells versus S in a semi-logarithm plot. The experimental points are depitedby solid triangles signs and solid squares. The parameter values used for the�tting are mentioned in the text.The reation sheme 3 doesnot ful�ll detailed balane, i.e, equilibriumonditions. The steady state onentrations in equation (5) are derived fromthe more general non-equilibrium onditions of stationarity. Ref. [36℄ pro-vides examples of reation shemes related to GE whih violate detailedbalane onditions. One of these involves the phenomenon of stohasti fo-ussing (SF) in whih signal �utuations sharpen the response in a regulated14



proess. SF appears to be an out-of-equilibrium e�et whih is absent if thereation sheme is onstrained by detailed balane. Modi�ations of rea-tion sheme 3 whih preserve detailed balane are possible and it will beof interest to determine whether SBR an our in both equilibrium andout-of-equilibrium senarios.4. Conlusion and outlookIn this paper, we have onsidered a simple stohasti model of GE and demon-strated that stohastiity provides the basis for graded and binary responsesto induing signals. The sole ingredients of the minimal model of stohastiGE studied in this paper are gene ativation, deativation, protein synthe-sis and degradation, eah of whih involves a number of biohemial events.Stohastiity in this model is assoiated only with the gene ativation and de-ativation proesses whereas protein synthesis and degradation are assumedto our in a deterministi manner. A deterministi desription of proteinsynthesis is justi�ed when the number of proteins produed is large. This isthe situation in the experiment by Zlokarnik et al. [6℄ in whih proteins perell are a few thousands in number. For smaller protein numbers, the inlu-sion of stohastiity during protein synthesis and degradation is expeted toblur the GE responses but the major onlusions of the paper still remainvalid. The proesses of transription and translation in the model are nottreated separately but lumped together in a single protein synthesis step.In an eukaryoti ell, ombining transription and translation into a singlestep may be onsidered to be a drasti approximation. One an study thee�et of stohasti gene ativation and deativation on the transription pro-ess itself and fous on mRNA synthesis rather than proteins in reationshemes 1-3. This type of approah highlights the quantal nature of tran-sription with bursts of mRNAs being produed in a probabilisti manner inagreement with experimental observations [9, 30℄. In fat, the value kp = 1is more appropriate if kp is interpreted as the mRNA, rather than proteindeay onstant. The mathematial analysis and onlusions are the same asbefore sine protein prodution is linked to mRNA synthesis. Despite thelimitations of the model, it ontains the important features neessary for anexplanation of the stohastially indued �all-or-none� phenomenon observedin some eukaryoti systems. The model results give a good desription ofthe experimental data of Zlokarnik et al. [6℄ and are expeted to be of rele-vane in explaining the binary response in GE observed in other eukaryoti15



systems [4, 5℄. The probabilisti nature of gene ativation and deativationproesses is ruial to explain how graded and binary responses in GE ourin the model. The stohasti origin of binary response is distintive from thebinary response brought about by positive feedbak proesses. Experimentsdesigned to probe the stohasti origins of graded and binary responsPlotof p(x) versus x (Case I, r1, r2 > 1): 1A (r2 >> r1), 1B (r2 = r1) and 1C(r1 >> r2) respetively.es, are needed for a learer understanding of the roleof stohastiity in suh responses. The stohasti model of GE,orrespondingto reation sheme 2, has earlier been studied to explore the stohasti ori-gins of haploinsu�ieny [13, 17, 37℄. The model studied in the paper isa modi�ation of the earlier model. The simpliity of the models allowsfor mathematial analysis and helps in identifying the origins of phenom-ena assoiated with stohasti GE. The knowledge and insight gained fromthe study of simple models like the present one provide neessary inputs todevelop more detailed and realisti models of GE.ACKNOWLEDGEMENTThe Authors thank Gregor Zlokarnik and David Hume for helpful omments.R. K. is supported by the Counil of Sienti� and Industrial Researh, Indiaunder Santion No. 9/15 (239) / 2002 - EMR - 1.Referenes[1℄ MAdams H H and Arkin A 1999 Trends Genet. 15 65-69[2℄ Rao C V, Wolf D M and Arkin A P 2002 Nature 420 231-37[3℄ Arkin A, Ross J and MAdams H H 1998 Genetis 149 1633-48[4℄ Karttunen J and Shastri N 1991 Pro. Natl. Aad. Si. U. S. A. 883972-76[5℄ Negulesu P A, Shastri N and Cahalan M D 1994 Pro. Natl. Aad. Si.U. S. A. 91 2873-77[6℄ Zlokarnik G, Negulesu P A, Knapp T E, Mere L, Burres N, Feng L,Whitney M, Roemer K and Tsien R Y 1998 Siene 279 84-8816
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